
Remote Vehicle

Interaction Architecture

Magnus Feuer - Jaguar Land Rover

An open source solution for the automotive industry

© 2014 Jaguar Land
Rover

• 80% of connected vehicle functionality shared across platforms
Core IVI and Server functionality are similar, regardless of vendor. The final 20% are the

services that defines the user experience.

• A shared, open source platform will benefit OEMs
A joint architecture and reference implementation allows OEM to minimize cost, vendor

dependencies, and security risks, letting them focus on applications and services that make a

difference.

• A shared, open source platform will benefit service providers
A common architecture allows service providers to easily port their products to additional

OEMs, thus giving them a wider revenue stream from multiple vendors.

Background

What we are doing

How do we allow an in-vehicle application to exchange data with other
devices and servers in a simple, robust and secure manner, regardless of

connectivity?

Build open source technology to handle authentication, authorization,

discovery, and data exchange between services in a sparsely connected
P2P network.

RVI is accepted by the automotive industry as a secure, reliable, and
proven technology choice for connected vehicle projects.

The Problem

The Solution

The Goal

•Enable new breed of 3rd party service providers
Open source implementation enables start-ups to develop in-vehicle apps and their

corresponding backend services, and showcase the finished product to OEMs.

•Alleviate vendor dependency
OEM can replace components at will, using either external or internal resources. All IP of the

replaced components belongs to the OEM.

•Wider talent pool
Large competence base provided through open source community, OEMs, app developers,

and professional service vendors.

Benefits

• Peer-to-peer based
Two nodes can exchange services without an internet connection.

• Provisioning
Services and nodes can be added and deleted from the system.

• Authentication & authorization
All executed services are authenticated and authorized against certified credentials.

• Service discovery
Services and applications can discover and invoke other services.

• Invocation
Services can be remotely invoked over a sparsely connected network.

Feature Set

• AGL Expert Group Formed

AGL's RVI Expert Group is up and running

• Wiki and code repos setup

http://wiki2.automotivelinux.org/eg-rvi

http://github.com/PDXostc/rvi

• Design completed and validated

Rich High Level Description document available at Wiki.

• Version 0.2 released

Handles core service discovery and transactional routing.

• Remote HVAC demo + video released

Real-time mirrored HVAC UI between Tizen in Jaguar F-type and mobile device.

Status

• Software Over The Air (SOTA) - Telematics Update San Diego Oct 30-31

Transfer, install, and validate a software package from a backend server to an IVI
unit.

• Remote CAN bus monitoring

Remotely subscribe to specific CAN frames, and have them delivered to a backend
server.

• Remote control of IVI nav system
Use remote mobile device to setup POI in vehicle's navigation system.

• More

Demo suggestions and cooperative projects are welcome.

Upcoming Demos

Architecture

Architecture - Overview

• API based
The API is the driving technology.

Implementation is secondary.

• Data Router commonality
Data Router connects all services on all devices.

•Mix of open and closed source
Components can be off the shelf, OSS,

proprietary, or a combination of the above.

•Network complexity shielding
A clean transaction API alleviates services and

applications from connectivity concerns.

Vehicle

App1 App2 App3

IVI Platform

Service

RVI Plugin
Control Unit

Data Router

JSON-RPC

Data Router

App

Mobile Device

Remote Vehicle Access Manager

Data Router

Charging
& Billing
Service

Customer
Portal Web

Service

Provisioning
Service

Browser

JSON-
RPC

JSON-
RPC

JSON-
RPC

3rd party

service

3rd party
service

3rd party
Service

JSON-
RPC

Software
Over The

Air
Service

JSON-
RPC

HTTP /
HTML5

Analytics /

Big Data

JSON-

RPC

Cloud

SMS / 2.5G / 3G/
LTE / WiFi /

Bluetooth

JLR/AGL-developed
componentOEM/3rd party proprietary
component

3rd party reference
component
Off the shelf component

CAN

JSON-

RPC

Architecture – Data Router

• Service Edge
Handles all traffic toward locally connected services.

• Authorization
Handles certificates and authorization for all traffic.

• Schedule
Handles traffic store and forward for unavailable destinations.

• Data Link
Controls communication channels to other node.

• Service Discovery
Identifies and locates local and remote services.

• Protocol
Encodes and transmits traffic to other nodes.

JLR/AGL-developed
componentOEM/3rd party proprietary
component

3rd party reference
component
Off the shelf component

Vehicle

Data RouterData Router

Service Edge

Data Link

Schedule

SOTA
Manager

SOTA
Manager

Authorization

E911
Trigger

E911
Trigger

Protocol
Service

Discovery

RVI/ XWalk

Plugin

XWalk

XWalk App

Architecture – Backend
Server

• Data Router

Standard deployment.

• Provisioning
Creates and distributes certificates granting access

rights to nodes.

• SOTA server

Manages and distributes software packages to nodes.

Cloud / TSP

Remote Vehicle Access ManagerRemote Vehicle Access Manager

Data RouterData Router

Provisionin
g

Provisionin
g

Service Edge

Data Link

Schedule

SOTA
Server

SOTA
Server

Protocol

Authorization

E911

PSAP

E911

PSAP
Media

Server

Media

Server

Service Discovery

JLR/AGL-developed
componentOEM/3rd party proprietary
component

3rd party reference
component

Services

Services – Requirements

• Global namespace for all services on all nodes, worldwide
All services on all provisioned devices must be addressable through a single schema.

• Localized service discovery
Locally connected nodes must be able to discover each other's services without Internet

access.

• Zero configuration
No configuration outside authorization shall be needed for a newly deployed node to join the

system.

• Network agnostic
A service shall be accessed the same way, regardless of the communication method used.

Services – Addressing

• Single name space for all services
New services can be addressed by creating a unique name for them.

• Service name identifies hosting node
Each service name, being unique across the system, carries enough information for Service

Discovery to identify where the node can be found.

• Hide network complexity
All service interaction with other services are done through the service name space, allowing

the actual communication to be carried out behind the scenes.

jaguarlandrover.com/vin/sajwa71b37sh1839/body/lockjaguarlandrover.com/vin/sajwa71b37sh1839/body/lock

1 2 3 4 5

Name Description

1 Organization Specifies a sub-section hosted by a specific entity

2 VIN sub-tree Specifies sub section for all vehicles

3 VIN Vehicle Identification Number

4 Service name Name of service

5 Command Command supported by service

Services – Service Name
Example

Service Edge

Services - Routing

Service Discovery

jlr.com/vin/1234/set_fan -> http://192.168.0.1/hvac

HVAC App

Mobile Device – 192.168.0.2

1. Application sends command
HVAC App sends an message, targeting a given service
URI, to Service Edge.

2. Locate target node
Service Edge asks local service Service Discovery to
resolve service name to a network address.

3. Return network address
Specifies where the target service can be reached.

4. Send request to Vehicle
The vehicle data router processes the command.

5. Forward request to HVAC Service
The HVAC Service in the vehicle executes the command.

{
"method": "call",
“service”: “jlr.com/vin/1234/set_fan”

"params": {
“callback": "http://localhost/hvac_app”
"arguments": {
“speed": 7

} } }

Vehicle – 192.168.0.1

Data RouterHVAC Service

1

2

3

4

5

Authorization

Authorization – Overview

• Certificate based
Certificates, signed by a trusted provisioning server, grants node access to services.

• Self-carried authorization
A node presents its certificates to another node to access its services, without

provisioning server connection.

• Service – service specific certificates
A certificate authorizes a specific set of services to access another specific set of

services, and cannot be used outside that context.

Authorization – Use Case

1. Create and sign certificate
A certificate granting access to the mobile device is created and
signed with provisioning server's private key.

2. Distribute certificate to mobile device
The targeted device receives its certificate

3. Send request and certificate to Vehicle
The certificate states that mobile device has the right to execute
the given request

4. Validate credentials
The certificate and request is validated by the vehicle through a
root certificate

5. Execute request
The validated command is forwarded to the target service for
execution

Backend Server

Provisioning Server

Vehicle 1234

jlr.com/mobile/+447412123123 ->
jlr.com/vin/1234/set_fan

Provisioning Server private key.

Mobile

Device

root certificate

Execut
e

set_fa
n

5

1

2

+set_fan

3

4

Authorization – Examples

[organization]/[path

]

[organization]/[path

]
+ wildcards

Access List

Format

Specifies the volume control command of the media service on all vehicles.

Specifies all commands under the vehicle_tracking service.

Specifies a specific vehicle's lock command in the body service.

jaguarlandrover.com/vin/sajwa71b37sh1839/body/lock

jaguarlandrover.com/vin/*/media/volume

jaguarlandrover.com/cloud/vehicle_tracking/*

Authorization – Topics not
covered

• Protection of certificate inside a node
A credential received by the mobile device needs to be secured in accordance with the

mobile device/IVI/server platform

• Certificate – device binding
A stolen certificate can be presented by another device to gain service access. Device

binding is done on an implementation level using hardware-specific mechanisms

• Secure communication
Protocol implementations are responsible for securing data transmission between nodes

using SSL/TLS or similar technologies

Conclusion
• Connected Vehicle architecture for next generation services

• Open source design, specification, and reference implementation

• Benefits the whole industry

• Hosted and driven by AGL

Next Steps
1. Joint projects

OEMs and other industry actors are being invited to collaborate under the AGL

banner.

2. Continued technical development

The RVI reference system is incrementally implemented, with demos
released as proof of concept and progress.

3. Widen scope to IOT
While RVI is tailored for the unique requirements and constraints of the automotive

industry, its design lends itself very well to the Internet of Things environments where

connectivity is an issue.

Thank You

Magnus Feuer

System Architect – Open Software Initiative

mfeuer@jaguarlandrover.com

http://wiki2.automotivelinux.org/eg-rvi

http://github.com/PDXostc/rvi

